
Porting and Optimization of biomedical benchmark applications
to the X-HEEP Open-Source RISC-V-based microcontroller platform

Contact Persons: Dr. Davide Schiavone (davide.schiavone@epfl.ch)

Mr. Dimitrios Samakovlis (dimitrios.samakovlis@epfl.ch)

Mr. Stefano Albini (stefano.albini@epfl.ch)

Prof. David Atienza (david.atienza@epfl.ch)

Thesis Description

Biomedical Applications for ultra-low-power wearable devices
Wearable devices promise to improve preventive medicine through continuous health
monitoring of chronic diseases. The design of low-power wearables for the biomedical
domain has received much attention in recent decades, as technological advancements
in chip manufacturing have allowed real-time monitoring of patients within the µW
range. To ensure continued progression in this domain, a co-design view that optimizes
both hardware and software simultaneously, and standardized tools are necessary.

In response to the aforementioned needs, the Embedded Systems Laboratory(ESL) has
developed BiomedBench. BiomedBench is a new benchmark suite composed of
state-of-the-art (SoA) biomedical applications for real-time monitoring of patients using
wearable devices. Each application presents different requirements during the typical
signal acquisition and processing phases, including varying computational workloads
and relations between active and idle times. Therefore, BiomedBench provides
hardware developers with a tool to assess the efficiency of their ultra-low power (ULP)
platform designs under varying requirements. Moreover, the open-sourcing nature of
BiomedBench will serve as a baseline for future application developers aspiring to
develop and deploy their biomedical applications in ULP devices.

Typically, biomedical applications for patient monitoring tasks include the modules
depicted in Figure 1 below. Typically, the processing step consists of signal
preprocessing, feature extraction, and inference based on these features. However,
applications can exhibit a wide range of workloads and computational requirements. For
example, feature extraction can be implemented explicitly (that is, manually engineered
features) or implicitly (e.g., convolutional neural network (CNN)). Similarly, the inference
step can use a lightweight machine learning method, such as a random forest or a
complex deep neural network (DNN).

mailto:davide.schiavone@epfl.ch
mailto:dimitrios.samakovlis@epfl.ch
mailto:stefano.albini@epfl.ch
mailto:david.atienza@epfl.ch


Figure 1: Typical computational pipeline of biomedical applications

From an implementation point of view, the system undergoes an always-on acquisition
phase and an intermittent processing phase, as presented in Figure 2. A complete
processing period consists of an idle period, during which the processing unit is in
low-power mode, and a computation upon acquisition of the full input signal. The
duration of the idle period varies significantly between applications and can dominate
the system’s energy consumption.

Figure 2: System operating modes during signal acquisition

BiomedBench includes eight applications representative of the biomedical domain that
offer a variety of workloads and profiles for the processing, idle, and acquisition phases.
All applications are coded in C or C++. Four applications are implemented in fixed-point
arithmetic, targeting low-end MCUs. The rest are implemented in 32-bit floating point
arithmetic. Four applications also include a multi-core implementation that enables
significant acceleration in the presence of multiple cores.

Considered ULP hardware platform - X-HEEP / HEEPocrates
On the hardware side, ESL has devoted a lot of research efforts to developing a new
open-source hardware platform, called X-HEEP (eXtendable Heterogeneous
Energy-Efficient Platform), to support the monitoring of participants in clinical studies
with low energy footprint. X-HEEP is an open-source, configurable, and extensible
single-core RISC-V 32b MCU, sponsored by the EcoCloud Sustainable Computing
Center of EPFL. It is based on many third-party open-source IPs and in-house IPs
developed at the Embedded Systems Laboratory (ESL) jointly with other EPFL
laboratories. X-HEEP provides a framework to run applications compiled for RISC-V on



a simulator (Verilator, Questasim, or VCS), on a Xilinx FPGA, and can be implemented
in silicon as well.

In 2023, ESL fabricated HEEPocrates, the first ASIC implementation (in TSMC 65nm)
deploying X-HEEP configured with the cv32e2 core and with 256kB of memory.
HEEPocrates instantiates X-HEEP as the main microcontroller driving a CGRA, an
In-Memory Computing macro. HEEPocrates belongs to the category of ULP platforms
featuring a 6mm2 X-HEEP chip, a maximum frequency of 470 MHz consuming up to
48mW. Hence, HEEPocrates is a suitable platform to deploy the BiomedBench
applications on and conduct a performance and energy analysis.

Thesis summary
The goal of this thesis is to utilize BiomedBench to evaluate the X-HEEP and
HEEPocrates platforms. To achieve this, the student will have to:

1. Learn to deploy the BiomedBench applications on X-HEEP / HEEPocrates
by efficiently utilizing the capabilities of the platform for the sleep and acquisition
phases

2. Perform timing and energy measurements of each application running on
X-HEEP /HEEPocrates, analyze and compare with SoA results.

3. Deploy the BiomedBench applications on X-HEEP FPGA changing the
memory size and CPU to find the optimal X-HEEP configuration for
BiomedBench, including data transfers from the FLASH to the on-chip SRAM
when data overfit the internal capacity.

4. (OPTIONAL) Apply algorithmic and software optimizations on each
application to speed up computations or/and reduce memory footprint in
HEEPocrates without degradation of the final application-level accuracy result.

Thesis outcome
The outcome of the M.Sc. thesis will be published open-source in the BiomedBench and
X-HEEP (link) repositories: The expected outcomes of this thesis are:

● [Deployment of complete applications to X-HEEP and/or HEEPocrates]
Development of software to run all the applications on X-HEEP / HEEPocrates.
The basic C/C++ implementation of each application is given, but the porting to
the platforms requires some extra code and smart deployment decisions to
respect the memory constraints of the platform. Complementary to the
processing part of each application, the acquisition and sleep mode should be
programmed efficiently.

https://github.com/esl-epfl/x-heep


● [Performance and energy results] Measuring performance and energy
consumption running each complete application on X-HEEP / HEEPocrate and
comparing with other state-of-the-art platforms.

● [Finding the optimal] Find the optimal configuration of X-HEEP FPGA
implementation for the benchmark by varying the CPU and memory capacity.

● [Application optimization] Optimize the C/C++ implementation and/or the
algorithms involved in each application. The target of the optimizations is to
improve the energy efficiency of the complete application which can be achieved
through decreasing the execution time or the memory footprint, provided there is
no accuracy degradation in the final result.

Learning outcome
Throughout the thesis, the student will learn:

● How different real-time patient monitoring applications are structured and what is
the state-of-the-art in the domain

● How to deploy such applications in resource-constrained devices
● How to orchestrate the processing, acquisition, and sleeping phases of such

applications
● How to identify application bottlenecks and apply algorithmic or software

optimizations
● How to study the critical architectural features of a platform, such as X-HEEP, to

achieve maximum energy efficiency for each application deployment
● How to use Git to manage projects with multiple developers
● How to collaborate with the team and to analyze and present the results

The thesis will be carried out at the ESL at EPFL, one of the world's top-class
universities. ESL is an active group (24 Ph.D. students among 45 members) involved in
many research aspects. The student will be under the supervision of Prof. David
Atienza, Dr. Davide Schiavone, and two Ph.D. students (Dimitrios Samakovlis and
Stefano Albini).

Required knowledge and skills:
● Low-level software design (C and/or C++ is going to be used throughout the

thesis)
● Good understanding of memory architectures and microcontrollers
● Good analytical skills
● Makefiles for complex project structures
● Teamwork and git



● Good background in algorithms and common ML models (required for the
optimization part at the end of the project, which is optional)

Appreciated skills:
● Scientific curiosity
● Good communication skills
● Advanced English
● Assembly knowledge (useful for in-depth performance analysis)

Type of work: 10% theory analysis, 90% coding and experimenting


